GRE数学难点题型思路指点 排列组合考点应对技巧介绍
2019-11-27 14:01 | 编辑:川外外语培训中心  来自:未知 
导读:GRE数学中排列组合的考点题型出现概率很高,几乎每场考试都会出现相关题目。而这类题目在解题思路方面对考生有一定要求,也属于大家比较容易做错的题目。下面小川就来分享GRE数学排列组合考点的解题策略技巧,为大家实例讲解清晰答题思路。 排列(permutation
GRE数学中排列组合的考点题型出现概率很高,几乎每场考试都会出现相关题目。而这类题目在解题思路方面对考生有一定要求,也属于大家比较容易做错的题目。下面小川就来分享GRE数学排列组合考点的解题策略技巧,为大家实例讲解清晰答题思路。
 
排列(permutation)
从N个数值或者物品(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!
例如:从1-5中取出3个数不重复,问能组成几个三位数.
解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60
也可以这样想从五个数中取出三个放三个固定位置
那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……
所以总共的排列为5*4*3=60。
如果可以重复选(即取完后可再取),总共的排列是5*5*5=125
 
组合(combination)
从N个数值或者物品(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:
C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M
C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10
可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,
那么他们之间关系就有先做组合再作M的全排列就得到了排列
所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式
性质:C(M,N)=C( (N-M), N )
即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10
 
掌握了GRE数学中排列组合的策略技巧,面对此类题型时就会得心应手了,希望大家要在日常备考中勤加练习!
 

上一篇:SAT语法正确率忽上忽下 如何提升?
下一篇:11类GMAT语文verbal常见生词前缀汇总整理

更多资讯请访问 》》》川外外语培训中心
0
热点专题
  • 雅思培训课程

  • 川外精品托福课程

  • 英澳名校菁英计划

  • 川外雅思六人精品班